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ABSTRACT 

The separation state of a physical system is defined as a geometric entity called a zonoid and a brief 
account of the mathematical properties of zonoids is given. Visual representations of (2-D and 3-D) 

zonoids enhance the intuitive grasp of the theory and calculation of their volume gives a useful (although 
degraded) measure of separation. The answer to the title question is then, on rigorous grounds, that 
chromatography is not a separation, but a “sepmix” process, i.e., it is both a separation and a mixing 
process. In linear chromatography, loss in 2-volume of separation between a solute and carrier increases 
along the column approximately according to JN, where N is the number of theoretical plates. 3-Volume 
of separation between two solutes and carrier first increases and then decreases. More intricate topics such 
as selectivity of separation are defined and discussed. Examples of problem solving with zonoids are given 
and it is shown that Rony’s extent of separation results from a problem of approximation and reflects only 
part of separation produced by the column. 
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1. INTRODUCTION 

This paper presents a brief account of a new geometric approach to separation 
engineering. called zonoid theory and shows its potential by application to chromato- 
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graphy. A small part of this theory has been presented elsewhere [1,2]. In order to be 
self-consistent, we recall and complete, in an abstract setting, relevant parts of the 
backbone of the theory, definitions and theorems without proofs or validity 
statements, in Section 2. Long or technical proofs are relegated to the Appendix. This 
will allow differently inclined categories of readers to linger on what they like most, 
without having to extract it painfully. Such an abstract setting is intended to ease 
application to other processes as well. Section 2 also develops further basic 
mathematical tools for comparison and classification of separation states. 

Column chromatography makes a challenge to separation engineering, a key- 
stone to its methodology. It is a transient process since the flow-rate of species is 
a function of time t and abscissa Z, which involves at least three species, i.e., two solutes 
and a carrier. Any correct theory of separation must cope with these two basic facts 
without recourse to simplification ab initio. Conversely, if such a theory can treat 
chromatography successfully, it will presumably be able to do so for any other process. 

Previous theories [3,4] on separation failed mainly on two grounds: first, they did 
not take in account the fact that, as stated above, the primary “product” of a column 
is, by nature, a flow, the composition of which is a continuous function of time. Failure 
occurred possibly because recovering and managing a large number of small samples 
would be “uneconomic”, or even “unthinkable”. Second, these theories concentrate 
on the separation of solutes, “forgetting” the eluent, which is however an essential part 
of the process and of its thermodynamic consistency. 

The aim of this paper is to show that zonoid theory removes these limitations: the 
evolution of separation between three species in the column can be computed as 
a function of Z, without the need to resort to any (arbitrary) “cut point”. 

The ability to cope with multi-component differential families is the core of the 
new separation theory presented here. In fact, a discretization of the outlet flow into 
“cuts” is unavoidable, but we must do it thoughtfully. Indeed, zonoid theory will give 
us a safe procedure: to minimize the loss of separation by mixing induced by the 
trapping procedure, after taking due account of the separation really produced by the 
column. This task will be addressed in further work. 

Is chromatography a separation process? This seemingly strange question stands 
behind the interesting and paradoxical paper from Golay [S] on entropy (im)balance in 
chromatography, but has not, up to now, been considered in all of its aspects. We shall 
leave for further study the pinpointing of the reasons why Golay [5] finds a discrepancy 
between entropy balance in chromatography and the second law of thermodynamics, 
noting for the moment only that the solution to this problem would clarify our 
understanding of chromatography. 

In contrast to entropic theories, a remarkable feature of the present theory is that 
the very nature, or selectivity type, qf’a process can be established by pure observation of 
conservedspecies evolution. It is mode/ independent. It is also independent of the nature of 
these conserved species (including, e.g., energy). 

Section 3 identifies the chromatographic counterpart to the mathematical 
entities given in Section 2. It also states the methodology for the study of separation 
states. 

Section 4 is a rather qualitative presentation of tools and geometric objects, 
using simple linear models of the process. The various degrees of selectivity of 
chromatographic separation are studied. 
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Section 5 deals with the title question not on “intuitive” grounds, but by 
a quantitative study of separation zonoids. As it becomes increasingly apparent in 
Section 4 that chromatography is not a separation process (at least according to the 
given definition), we must assess clearly which type of process really chromatography 
is. Here comes into play the new type of process called the “sepmix” process, coined in 
Section 3 for a process (or transformation) that is neither a separation nor a mixing 
process. Chromatography will be revealed to be the first example of a sepmix process. 

Section 6 lists some other questions that the theory of zonoids asks (and requires 
answers for), in order of importance. It also shows how the extent of separation 
defined by Rony [3] fits into the scheme. 

On a point of terminology, in the following, zonoids, convex sets of mixtures 
(CSM) and separation content are really the same object, they are all the embodiment 
(of the concept) of the separation state, seen from different points of view. 

One could give many variant forms to the results of this paper, according to 
which parameters on which one wishes to make the separation state depend. We have 
chosen to use variables more natural to users of chromatography. Readers with 
a deeper interest in zonoids are referred to refs. 6-12. 

2. THEORY OF ZONOIDS. A SUMMARY 

We outline here, without an attempt to justify the concepts axiomatically, or to 
give proofs or make precise conditions of the validity of the theorems, as would require 
a correct mathematical exposition, the main concepts and results of zonoid theory, in 
a restricted frame suited to column chromatography. The mathematical theory of 
zonoids is treated in detail in refs. 612. 

2.1. Systems, linear space E and dtfferential families 

A formalization of the concept of a (uniaxial) “physico-chemical system” leads 
to the following definition. 

Definition 
Given a vector space E of finite dimension n, state C of a system 9 is 

a l-differential form on the real line R, with value in the positive orthant E+, and such 
that coefficient F of E is a Lebesgue integrable vector valued function: 

C = F(t)dt, tEdt c R 

E is called the space of (conservative) quantities, and a vector N E E is called a quantity 
vector. E is referred to as an n-dimensional (n-D) space. In accordance with tensor 
notations, (contravariant) coordinates are indexed as superscripts. 

E is given norm L1, l]Nlll = f IN’1 
i=l 



IS CHROMATOGRAPHY A SEPARATION PROCESS? 29 

A problem of evolution arises when F depends on a parameter z, i.e., we consider the 
evolution of state of the system as a function of z. We note 

C(z) = F(z,r)dt, IE At(z) c R, ZE L c R 

In the following, we consider n = 3, and diffuse, smooth states, i.e., 

F(z,r) = (F’(z,t), F’(z,r), F3(z,r)), t E Ar, F’ofclass C’(d1) r~ C’(L) 

Let A2 be the standard simplex of E: 

A2 = {xEE+lx’ +X2 + 2 = I} 

Calling F = F’ + F2 + F3, IIF(z,t)ll > 0 on L x At, we associate to F the 
composition function x (point valued in 42): 

x(z,t) = ( $j(z,o,f&,),~z,t) , > tEAt, ZEL 

Formally (and for a better physical grasp), the l-differential form X may be thought of 
as a set of “infinitesimal” quantity vectors “dN” in E. 

9 = {dN(r)ltEnt} = {F(t)dt},,/,, 

which is called a l-differential (l-d) family and generically noted 9. System state and 
families or l-differential forms are therefore the same concept. A problem ofevolution 
will therefore involve a l-d family depending on a parameter, e.g., R(z). 

The concept of a family of vectors is central to zonoid theory as the family 
contains all the relevant information to characterize separation present in the system. 

The mixing convention is that a state (family} is said to be reduced iff all its 
colinear vectors in E+ have been added together. The mixing convention avoids trivial 
complications, and is natural as we are looking at separations. Note that many 
physically different systems can map into same reduced state. 

Invariance of families or states by change of variables 
The change of variables follows a chain rule, or, more precisely, let t = .f(r),f, 

continuous, derivable, monotonic on segment At, T = f’ (1): 

{dN(r)jrE At = (F(t)dt}t E At = 
{ ldf 1 ]w’W, 

F&z) $1 dr 

This is really a property of differential forms. Note that inclusion of dt in the notation 
of differential families allows for the automatic use of the chain rule and that the 
absolute value is taken to conserve positivity in the case when f is decreasing. Eqn. 
1 expresses conservation of quantity in the form of an invariant property associated 
with 9. 
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Integration ?f .families 
Any interval (or reunion of disjoint intervals, generically called a region), w c At 

generates a quantity vector by 

N(w) = F(t)dt = 
s s 

X,F(t)dt, N(o) E E 

0, R 

(2) 

where the characteristic function, x(,,:lR + {O,l} (or discrete sampling function) is 
defined by 

xw(t) = 1 if tEc.0 
xw(t) = 0 if tea 

Al 

N,, = s F(s)ds is called the sum (or distal) vector of family 9. In an evolution 

problem, a &tern is isolated iff N,(z) is fixed. 

Approximation of *families 
A partition of At into p intervals (or sub-regions) ml, . . ., co,, defines a discrete 

sampling (approximation) of system state by the (discrete) family of quantity vectors: 

If needed, Nj can be looked at as columns of the non-negative 
whose entry Nj represents the quantity of species i in region j. 

quantity matrix 

2.2. Zonotopes and zonoids (convex sets of mixtures) 

Taking advantage of the vector space structure of E, we define a geometric 
operation on sets. The Minkowski sum of sets A and B is the set 

A+B={M+NIML~,N~&A,B~E} (3) 

with E considered as an affne (point) space. 
To a quantity vector N we associate, in a straightforward way, a segment 

denoted [O,w or N for short, with N = (dN ( iz E [O. 11, NE E}. Here E is considered as 
a vector space. 

Definition (Coveter (6,7]) 
A zonotope 2 is the Minkowski sum of a finite set (family) of segments of E: 

Z = f: [O,Nj] 
j=l 
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Simple examples of zonotopes (zonohedra if n = 3) are a 
polygon with central symmetry, cube and pa .rallelepiped. 

parallelogram, plane 

Theorem I 
A zonoid 2 is the limit (norm L1, Hausdorff distance on the set of conpact 

convex polytopes induced by norm L1 on E) of a convergent sequence of zonotopes. 
Examples of zonoids are a circle, closed plane curve with central symmetry, 

sphere and ellipsoid. 
Let Z be the closed set of n-dimensional zonoids. In fact, if K is the set of 

zonotopes in E, Z is the closure of K. 

2.2.1. Projections 
Any partition of a base of E in two subsets and their spanned subspaces V, V’, 

defines a canonical projection in E, that is. a projection parallel to VL onto V. The 
projected object inherits the indexes of base of V, e.g., if V = linear span (el, e2) then 
Z12 is the projection of 2 onto VI = linear span (es). 

Theorem 2 
The image of a zonoid Z(9) by a linear transformation T (e.g., projection), 

T(Z), is the zonoid generated by the transformed family T9, i.e., 

The separation content Z of a system state C of system 9 is as follows: 
for a discrete system state with p vectors, the zonotope 

Z(N, h . . . . NPj = MEEIM= iE.‘Nj,i.‘E[O,l],j=(l,..., p) 
j=l 

for a diffuse system, the zonoid 

Z{F(t)dt),, = (6) 

3,(t), called the sampling function, is a measurable function of t on dt. 
If C is a discrete (diffuse) system state, its separation content Z(C) is a zonotope 

(or zonoid) said to be generated by the discrete (or differential) family of quantity 
vectors. In both cases, Z(z) is defined as the set of mixtures feasible by sampling from 
c. 

Liapunov’s convexity theorem asserts that Z is convex and closed. The 
Krein-Milman theorem shows that we may take sampling functions R (eqn. 6) in the 

smaller (included) set xw, that is, we may restrain the sampling function to be 
characteristic functions without loss in possible mixtures. Therefore, eqn. 6 can be 
restated as the following theorem. 
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Theorem 3 
2 is the range of the vector measure p, whose density is F(t) relative to the 

Lebesgue measure on At. 
From theorem 3 we obtain the fundamental property of zonoids. 

Theorem 4 
A necessary and sufficient condition for ME E to be feasible by sampling from 

a family 9 is that M belongs to zonoid Z(9j. 

2.2.2. Exterior product of vectors 
Define the exterior (or cross) product of two vectors NI, N2 E E = R2 as 

N1 A N2 = Det[N,,N2] = N:N$ - NfNi (7) 

and for n = 3, N1, N2 E E = R3 is a vector (in a 3-D space denoted A2E) 

(Ni A N2)k = = MiNj2 - N{N’,, 1 < i <j < 3, iJ # k,k = 1,2,3 (8) 

If N1, N2, N3 E E = R3, the exterior (or mixed) product is 

N1 A N2 A N3 = Det FJl,N2. N3] (9) 

The properties of an exterior product generalize those of determinants. 

2.2.3. Regular selectivity 

Definition 
A family of p vectors in 3-D space E has the 3-regular selectivity property iff its 

elements can be linearly ordered in such a way that 

(10) 

Similarly, a l-differential family has the 3-regular selectivity property if a regular 
parameter exists such that 

F(s) A F(r) A F(u) b 0, v 0 d s < 1 < u d At (11) 

Theorem .5 
If F is two times differentiable, a local requirement for 3-regular selectivity is that 

the Wronskian determinant W(F) be non-negative: 

W(F) = F(t) A F’(t) A F”(r) 2 0, v 0 < t < At (12) 

Selectivity can be monitored directly from the graph y of x(t) in simplex AZ, as shown 
by the following theorem. 
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Theorem 6 
Selectivity is 3-regular iffy is convex. 
Selectivity between species i, j, i # j, is 2-regular iff one of the equivalent 

properties holds for any straight line KQ, K the vertex of A2 (extremity ofe,J, k # i,,j. 
Q on y: 

(i) KQ rotates uniformly when Q follows y uniformly; 
(ii) no line KQ has another point on 7 than Q. 

Definition 
A l-differential family of n species has totally regular selectivity iff it has 

r-regular selectivity for any 1 < r < n. 
For n = 3, a study of selectivity involves study of 2 x 2 minors of Wronskian 

matrix 12. 

Dtfinition (Karlin /13]) 
A function$ R + R+ is a Polya frequency (PF) function iff all minors of the 

matrix n x p of elements Kj, pi =,fij - xi), are positive for any two finite linearly 
ordered sequences: .yI < .x2 < . . . -=c x,, y1 < yz c . . . < y.; f is a Polya frequency 
density if further it is integrable on R. 

PF functions are stable by certain transformations: 
(I) ifflu) is PF, thenf(au + h) is PF, a, b given real numbers; 
(2) ifflu) is PF, $(u) strictly increasing, thenA$(u)) is PF. 

Theorem da 
A family F(r) such that I” = .f‘(t - ti), where f is a Polya frequency function, has 

totally regular selectivity. 
These definitions generalize themselves to constant sign in eqns. 12. Note that 

selectivity is conserved for a family J(t) 9, A > 0, but not conserved in general linear 
operations. 

2.2.4. Boundary of zonoids 
Call aZ the boundary of zonoid Z and consider 3-D zonoids. 

Lemma 6 

Every tangent plane to Zis spanned by two vectors F(t,), F(t& tl, t2 E [0, At]. 

Definition 
A zone L(t,) is the set of points A4 on aZ, where the tangent (support) plane TM 

contains direction of F(t,). 

Theorem 7 
L(t,) is a closed line and the set of tangent planes envelopes a cylinder whose 

generatrix is parallel to F(t,). 

Theorem 8 
In the case of 3-regular selectivity, PZ is split in two parts, i?Z+, dZ- by the 
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cumulate curve. For SZ+, called the “upper” (or “positive”) part of i?Z, we obtain 
a two-parameter expression of the surface: 

dZ+: M(j,, 12) = No + N(t,) - N(&), 0 < tI < j2 < Aj 

For the “lower” part, SZ-, we obtain 

12 

?Z-: M(t,, t2) = 
s 

F(r)dt, 0 < tl < t2 < At (14) 

rl 

Clearly points M with same arguments in eqns. 13 and 14 are antipodal (i.e., they sum 
to No) in line with central symmetry of Z. 

In the general case we obtain an equation for any point on 1??2+: 

t3Z+: M(r,, t2) = s F(t)dr, 0 < t, < tz < At 

~+(h,b) = (T do. At] 1 F(h) A ~0~) A F(~) > 01 

where the integration domain is defined by the solution of a (non-linear) equation. 

2.2.5. n-Volume of zonoih 
E, the volume of the n-dimensional body Z, provides a numerical value (in fact, 

an antisymmetric tensor) for separation, called the n-volume of separation, If one 
considers a separation between a subset of species, e.g., 1, 2, the volume is labelled 
accordingly, EIz. 

The differential volume element is, for a 2-d zonoid, 

dz = IF(s) A F(t)ldsdl 

where we may drop the absolute value if 
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Theorem 9 
The 2-volume of separation of the differential family F is given by 

c Y= 1 F(s) A F(t) 1 dsdt 

O<s<t<Ar 

(16) 

In this case, multi-linearity of the exterior product gives, through integration, if 
selectivity is 2-regular: 

E = s N(t) A F(r)dr 

O=StQAt 

with cumulate vector N(t), defined as 

(17) 

N(t) = 
s 

F(s)ds 

0 

Note that eqn. 17 is a classical expression for signed area (seen from the origin) 
generated by a plane curve given by parametric equations. 

These equations extend readily to zonotopes and zonoids in spaces of higher 
dimension (compare eqns. 16 and 19). 

In the discrete case, i.e., for a 3-D zonotope, 3-volume is (from ref. 10) 

;: Id= c 1 Nj, A Nj2 * Nj3 I (18) 
lGjl<j2<j3GP 

For a diffuse family, the equivalent of eqn. 18 is 

c” = 1 F(r) A F(s) A F(t) 1 drdsdt 

Odr<s<t<At 

2.3. Geometric comparison of separation contents 

2.3.1. The existence ordering 

(19) 

Definition 
A discrete system state C represented by family 9 = (Nj[j E J} is said to contain 

a greater separation than system state c’, or 9’ = (Mk 1 k E K} iff family 9’ can be 
made by sampling from family 9, that is, iff a J x K matrix [p] exists such as 
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As NO = 1 Mk = c Nj, families 3 and 9’ have the same sum vector, and therefore 
keK jeJ 

we compare two states of an isolated system. If n = 1, we recover the rule of 
conservation of quantity. 

For diffuse systems represented by l-differential families, we make the following 
definition. 

Definition 
A system state (family): 

has a greater separation content than a system state (family): 

iff a non-negative function 1, called a sampling kernel, 3.: I1 x Z2 + R+ exists 
such that 

F,(t) = 
s 

A(t,r)F2(z)dt, tdl (21) 

12 

s 

A(t,z)dt = 1, ~1~ 

II 

(21a) 

Both eqns. 21 and 21a imply, through Fubini’s theorem, 

JF,(t)dt = JF,(r)di = N,, 

11 12 

Sampling kernels generalize sampling functions defined in eqn. 6. 
Sampling kernels generate a partial order relation, called existence, on 

separation states or zonoids, i.e., on Z: one writes 

and reads eqn. 22 as: separation state E’ exists in separation state C. We have 

Z(z’) < Z(C) and Z(z) < Z( C’) * C = C’ 
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By a theorem from Blackwell [12], if dimE = 2, the existence order is equivalent to 
inclusion of zonoids, but is a stronger order in general. 

The physical meaning of inequality 22 is that (the whole) system state C’ can be 
made by sampling of system C. 

As subtraction has no meaning for zonoids, we cannot simplify these as for 
scalar inequalities, However, we have a simplification property: 

IfZ’= Z; +Zz,Z=ZI +Z2,thenZ’<ZeZ; <Z1 (23) 

2.3.2. A classification qf transftm?~ations 

Definition 
A transformation T, C + C’ = T(C), occurring in a isolated system is qualified 

as: 
a pure separation iff (Z( T(C)) < Z(C), i.e., separation content increases; 
a pure mixing iff (Z(z)) < Z(T(C)), i.e., separation content decreases; 
a sepmix iff neither case holds, i.e., separation contents are incomparable. 

3. OVERALL SEPARATION BALANCE IN CHROMATOGRAPHY 

Our primary interest will be in the overall separation balance and we shall not 
attempt here to go to the root of the process and discover how the separation evolution 
is governed by partial differential equations of propagation themselves, together with 
their initial and boundary conditions and their thermodynamic constraints. 

3.1. Iden tjfication qf j’low Jmilies 

The separation of two species by chromatography is basically a ternary process, 
as it involves necessarily some spending of a third species called carrier: space E of 
quantities is three-dimensional, dim E = 3. 

A natural base for E is formed on unit quantity of each pure species, e.g., axes 
will be labelled in moles of species I,2 (solutes), 3, carrier. In this base we associate, for 
any mixture of carrier and solutes, a vector of components (N’, iV2, N3). Note the 
superscript species label. A formal distinction is that species will be all chemical 
components injected into the column and solutes will be only those one wishes to 
analyse or separate. We make the convention that solutes are numbered by increasing 
retention times and the carrier is put as the last species. 

The composition of a mixture is now expressed by a molar fraction vector x and 
associate point in LI 2, the molar fraction simplex. 

From this point on, we shall use consistently notations linked with the physical 
nature of the represented entity: F for a (vector) flow of species, N for a (vector) 
quantity of species, x for a (vector) molar fraction. 

A (hypothetical) selective detector placed at a fixed point on the abscissa z in the 
chromatographic column would record a chromatogram of concentrations of solutes 
in the mobile phase (and, consequently, flow-rates), from which we calculate the 
coefficient function F of l-differential family of quantities: 

F(X) = (F’(;,t), F2(=,r), F3(:,t)), t E d t, z E R 
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Carrier flow is usually calculated by difference, from 

F3(z,t) = P(z,t) - F’(z,t) - F2(z,t) 

where p(;,t) is the total molar flow-rate, assumed to be known or to be measured. 
A family is denoted 9-(-c) = [F(Z,t)df}fEdf 
Alternatively, one may obtain a family by simulation through a differential 

model of the propagation involving a balance equation for all species, a necessity when 
only the sum F’(z,t) + F2(z,r) is the one physical quantity that can be monitored. 

Clearly we obtain a dzjjfuse system (except at z = 0), as components of F, flow of 
species through the section of a column at abscissa 2, are smooth functions. 

3.2. Parameters and intervals 

The natural parameter t of the family is time and the evolution problem has 
parameter Z, abscissa in the column. 

In principle, owing to the nature of diffusion, the cycle or interval of time of 
collection At(z) (and therefore carrier quantity and zonoids) is unbounded. To avoid 
mathematical complications, we shall often consider that essentially all the injected 
feed is recovered in a finite time interval called a cycle, a good assumption since for all 
of our models, the solute i flow (i = 1, 2) will follow Gaussian or near Gaussian laws 
centred at 6, with variance a:. For rigorous study. we must take dt = (- GO, + a). 
However, for most practical purposes 

will be appropriate. In the last case we shall slightly abuse the notation by confusing the 
interval At with its upper bound. For an isovariant case, eqn. 24 defines an interval 
6a + FZ - E, centred on the mid-point between peak maxima. 

A column is of bounded length L, so that we may put 0 < z < L. 
The system state is obtained from observation of flow-rates given by a detector 

located at z as a function of time, during time interval d t. Passing to space of quantities 
E is straightforward since dN(z,t) = F(z,t)dt represents formally the (infinitesimal) 
quantity that would be collected in the mobile phase between t and t + dt at z in the 
column. 

A parallel theory could have been developed, reversing z and t, using lineic 
concentrations instead of flows, i.e., considering the system (state) C as the content of 
a volume Q of the column with the problem of evolution in time. However, it would be 
less natural for the present application. 

Although flows are the more natural variables, we may also consider chromato- 
graphy as a spatial process and, in a sense, this must always be ultimately so, thinking 
as if elements of the family were in different regions (or tanks), the produced family 

(W.t)d& 11 g oing into a fraction collector which collects during a time interval dt 
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flow vector F(z,t) passing through point z into a differential (volumic) 

dV, whose content has concentration C(z, V’). As we have 
region of volume 

(F(z,l)drjtEd, = (C(z, V)d VjVEdV with d V = Qdt 

this new family results from the flow family by a simple change of parameter and use of 
a chain rule and therefore is completely equivalent to it. 

In elution chromatography, an inlet (discrete) family consists of two vectors: 

the former being the quantity of feed and the latter the quantity of pure carrier taken in 
by the column during the cycle time, taking the flow of carrier as F3(z,t) = Fz = 
constant. The outlet family produced by the column is 9(L) = (F(L,t)dt}t,,,. The 
overall species balance imposes that these two families acquire the same sum vector, at 
least to a reasonable approximation. However, the flow-rate of carrier Fz must be such 
that solutes are sufficiently diluted in the column so that hypotheses of the model hold. 
In practice, taking in account the cycle time given by eqn. 24, this will impose 
a minimum quantity of carrier iV& Using the simplification property given in eqn. 23, 
we see that any quantity of virtually pure carrier recovered at the column outlet can be 
“subtracted” from the pure carrier vector in the inlet family. This allows the minimum 
cycle time to be taken. 

Fig. 1 shows chromatograms, the starting point of our investigation. 

3.3. Prohlertz of evolution 

We identify now the problem of evolution: clearly we are interested in comparing 
separation states of flow families for increasing values of z, length along column and, 
especially, initial (inlet) and final (outlet) flow families. The inlet zonoid is generated by 
the (differential) family of inlet quantity vectors in the cycle and the outlet zonoid is 

Flow-rate 

0.06 

0.05 

solute I 

conds 

Fig. 1. Chromatograms at different locations in the column. L = 25,50, 75, 100 cm. Conditions: HETP = 
0.1 cm; 14 = 5 cm/s: X-l = 20; k* = 22; I = 1.10: quantity injected per cycle, 1, 1,26 mol; carrier flow-rate, 
0.2 mol!s; cycle time, Jr = 130 s. 
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generated by the family of outlet quantity vectors. From species conversion, these two 
zonoids have the same sum vector. 

In other words. a cycle transforms a system state C into a system state C’. From 
this point of view, the inlet (or outlet) family can also be called the initial (or final) 
family. 

For theoretical and design purposes. the evolution of a zonoid together with all 
of its canonical projections has to be considered, i.e., projections on planes of 
coordinates (1,2), (2,3), (2,3), which indicate the binary separation evolution between 
solutes or a solute and the carrier. Note also that separation between linear 
combinations of species can be considered, e.g., separation between carrier and total 
flow of solutes (1,2) will be monitored in the vertical bisector plane. 

The above material is all we need in order to assess and compare, in two and 
three dimensions, separation states. 

However, two intermediate geometric tools will be useful, namely, graph r of 
cumulated quantities, in E, for the construction of a zonoid, and, graph 7 of molar 
fractions function, in d 2. for the study of selectivity. 

3.4. Gruph r of cunzulafec~ quantities 

By time integration of F(r,t) as shown in eqn. 2, from z = 0 to t = t, we obtain 
the cumulate family, N(z,r), which is shown for z = 25 in Fig. 2. 

As a one-dimensional “object”, r, the graph of N(t), is a skewed curve (Fig. 2) 
and bears no evident connection with the three-dimensional zonoid Z it generates. 
When t increases. point N goes from the origin towards the distal point on r. Although 
it is clear that r belongs to Z, there is no guarantee that it belongs to c?Z. Hence one 
needs either some algorithm to calculate and represent the zonoid from experimental 
data, or some equation to obtain the boundary if the model is known. Such an 
algorithm is currently under development. Here we adopt the second approach as 
equations are simple to conceive and implement. at least for some simple models 
considered below. 

In all 3-D drawings of zonoids or simplexes. the orientation will always be the 

Fig. 2. Graph of cumulated quantity vector N(f) with canonical projections. z = 25 cm; Fi = 0.2 mol,!s. 
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Fig. 3. Evolution of the composition X(I) in AZ. Conditions as in Fig. I, L = 25 cm. 

same, namely with the origin at the lower, back and left vertex, with the species 1 (the 
less retained) axis pointing towards the front, the species 2 axis horizontal parallel to 
the plane of the drawing and the carrier axis vertical parallel to the plane of the 
drawing. The cube is assumed to be transparent and the vertical scale has been 
contracted by a factor of 26. 

3.5. Graph 5’ qf molar jkrctions family 

Evolution of the composition [molar fraction vector, x(t)] of the outlet flow is 
represented by a curve y(t) in the molar fraction simplex AZ on a cycle (Fig. 3). This 
curve belongs also to the hodograph cone of r (the set of rays starting at the origin, 
parallel to a tangent vector to r). 

>’ is a closed curve in AZ if t is allowed to vary from - cc to + cxj. Note that y is 
“nearly closed”, i.e., on most practical grounds if dt is given by eqn. 24. Tn our 
convention that species I is less retained than species 2, point x rotates counter- 
clockwise when t increases. 

4. LINEAR MODELS OF CHROMATOGRAPHY 

We shall consider two types of linear models of propagation of elution bands 
into the column. For ease of interpretation in zonoid theory, these models are written 
(a rather unusual feature) in terms of flow-rates, but they could be transformed easily 
into concentrations. since c’ = QP. 

4. I. Basic hype theses 

Strong hypotheses are made to arrive at an explicit solution of the propagation 
model of chromatography. 

By linearity of a process we mean that a linear combination of injection functions 
F’(O,t), F2(0,t) with positive coefficients a, b produces the same linear combination of 
outlet flow-rates function F’(z,t), F2(z,t): 

aF’(O,t) + bF2(0,t) gives aF’(z,t) + bF2(z,t) VZER+ 
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Linearity allows us to normalize quantities of species. as zonoids will transform 
themselves by linearity and n-volumes will be multiplied by an appropriate scalar 
quantity. Therefore, a yield of 3-volume can be defined as 

(25) 

where NANiN: represents the 3-volume of total separation between species. 
The linearity hypothesis involves high dilution both in the stationary phase, i.e., 

constant partition coefficients and the assumption of a small injection of solutes, both 
in quantity and in injection time, into the carrier (superscript 3). Then, we have 

F3(i,f) = F - F’(z.I) - P(z,~) 2 F (24) 

where r”, the flow-rate at the column inlet, is a known constant. In the following we 
admit also that the carrier is not adsorbed or absorbed on the stationary phase. 

Anyway, this assumption is not necessary since a differential family with 
coordinate functions (F’, F2, F) results from (F’. F’. F3) by a linear transformation, 
and the results upon separation can therefore be transposed immediately (Thcorcm 2) 
from one family to the other. 

The solution of the balance equation of species, in the form of Partial 
Differential Equations in the case of superimposition of diffusion upon a plug flow 
(with suitable limit conditions), or of a discrete model of the column in the form of 
Ordinary Differential Equations (the plate model), leads in the former instance to an 
(approximate) Gaussian and in the latter to a Poisson distribution of flow-rate of 
a solute; see, e.g., Villermaux [ 141 for a comparison of these models. From the central 
limit theorem in probability theory, both of them are asymptotically identical, that is, 
when the number of plates or, equivalently. the length of column approach infinity, 
a result which allows both of them to be expressed with the same parameters. 

Hence parameters of the plate model, more acceptable to chromatographers, 
will be used throughout: a column is equivalent to N perfectly agitated vessels called 
theoretical plates, set in series. On the above asymptotic common solution, N and D, 
the dispersion coefficient (supposed to be identical for all the species), are related by 

(27) 

where HETP (denoted H) is the height equivalent to a theoretical plate and u is the 
linear flow-rate of the carrier. ci, the standard deviation of the Gaussian distribution of 
the flow-rate (as a function of time). depends on the mean residence time 6 of solute i: 

(28) 

Ofcourse, more realistic expressions for H W. II could be used, taking account different 
contributions to dispersion. 
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A5 z = NH. < at location z is given by 

(2% 

Although in the following, for the sake of simplicity, we adopt the “no pressure drop” 
hypothesis, such a requirement could be relaxed as far as separation between species is 
concerned. In the case of a moderate pressure drop, and for a carrier following the law 
of perfect gases, flow vectors do not depend explicity on pressure p, a distinct 
advantage of the present formulation, and we have simply to take into account the 
dependence of p and 14 on z. By straight integration of Darcy’s law we obtain 

u(z)p(z) = u(L). p(0) = P. p(L) = 1, p2 = P2 - ;(P’ - 1) 

which, by integration of eqn. 29. written in a differential form relating dz and d&, gives 
the dependence of retention time on pressure: 

_ 2 P3 -p3 1 ~- 
ri=3. P2- 1 La(L) 

p(l + k’) 

Similarly, eqn. 27 for the mean HETP (H, should be modified to 

H=y,(P4-P4w2- 1) 24-Q .- 
8 (PA - py a(L) 

A complete study of separation would, however. take into account another conserved 
quantity, namely momentum, but, although feasible in principle, this would compli- 
catc the study tremendously. 

4.2. Three linear models 

4.2.1. Model I. asymptotic Gaussian 
From the well known equation for Gaussian peaks, valid for a pulse injection of 

a small quantity of mixture into a column of infinite length (at both ends), we may 
deduce, using a staged model, asymptotically valid, i.e., for N---t + co, the following 
expression for the flow-rate of solute i: 

F’(NJ) = Rpo- .yYe-i!v(-a’. tER, i= 1,2 
27[t, 

(30) 

(note that in a strict sense, eqn. 30 cannot bc valid for t < 0, as it would violate the 
principle of causality). < is equal to the retention time of the maximum of the peak. 

4.2.2. Model It, Gaussian, isovariance assumption 
For computational simplicity, and as interest in chromatography focuses mainly 
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on difficult separations, that is with differences between retention times much lower 
than the retention times themselves, we may assume that oi in eqn. 28 depends not on i, 
but on some mean retention time for the group of solutes. Physically, this means that 
although the two peaks translate at different speeds, they enlarge at the same rate, 
depending on z or N but not on the species. The injected quantity of species acts only 
through a vertical affinity on the peak. We shall set (although other mean values could 
be chosen) 

From eqn. 28, we obtain (isovariance assumption) 

Therefore, the flow-rate vector for solutes becomes 

F’(N,t) = No---- . p(y, j = 1,2 (32) 

4.2.3. Model III, Poisson 
The final linear model considered is the plate model. a classical one in chemical 

engineering, the solution of which can also be derived by a probabilistic argument 
assuming for each species an independent Poisson law with parameter ;li. Let P(NJ) be 
the probability for a molecule of given A to be at stage N: 

(33) 

Parameter ii, depending on the species i, is 

?Li = 
N 

(1 A)fi = < 

is the mean number of plates “seen” by a molecule of species i during the unit time 
interval if the molecules distribute themselves randomly upon the f >, 0 axis. By 
replacement of %i with its above value, multiplied by t, the flow-rate vector acquires the 
form 

N-t 
, tER+, i= 1,2 (34) 

where we have extended to real (rather than integer) values of N using f(N), the 
gamma function (recall f(N) = (N - l)! if N is an integer). For t < 0, F’(N,t) = 0. 
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Note that if N is an integer, eqn. 34 is the solution for a Dirac injection at time 
t = 0 into the first cell of a series of N perfectly agitated cells (modelled by a system of 
ordinary differential equations). Therefore, the results of model III will be valid for 
a larger class of separation processes than chromatography, e.g., liquid-liquid 
extraction. 

All families resulting from these models are summarized in Table 1. According to 
our conventions, F is the flow-rate family and N is the quantity (cumulated starting 
from the initial time of the cycle). The following definition has been used: 

” 

s 12 

N(u) = err(u) = - e-zdt 

- 7, 

(35) 

Eqn. 35 is slightly different from the other definition of error function often used, i.e., 

” 

e-‘*df 

We have: erf = 1/2(Erf + 1). 

The incomplete gamma function y(a,u) is defined as usual by 

” 

y(u,u) = 
s 

PP ‘e-‘dt, cI > 0 

n 

W(F) are the corresponding (Wronskian) matrices, i.e.. lines of the matrix are for 
species 1, 2, 3 and columns for time derivatives of order 0, 1. 2 of F. 

4.3. A qualitative stud?1 qf zonoids evolution 

Unless specified otherwise, we shall use the Gaussian model I although other 
models would give similar results, excepl for some details. That we may study 
a l-differential family and zonoid independently of the quantity and composition of 
injected mixture can be deduced from the following. 

From linearity, F, or the l-differential, family is proportional to the corre- 
sponding coordinate of N ,,, that is, the zonoid obtained from injected vector No is 
deduced from the zonoid calculated for the mixture (l,l,l) by the product of affinities 
Me along axes er (i = I ,2.3). Also, canonical projection (1,2) does not depend on the 
dilution of the injection in the carrier, as long as injection time is short. 

The curve I‘ = N(r), as the primary ingredient for the zonoid construction, is 
drawn in Fig. 2. Direct examination of r and its projections on base planes reveals that 
the vertical projection of f on the ground plane (1,2) is convex, but projections on 
planes (1,3) and (2,3) are not. It suffices to note here that a plane arc of curve generates 
a two-dimensional zonoid and bounds it if the arc is convex. Therefore, canonical 
projection of r on the ground plane shows directly the projection of the 3-D zonoid. 

Clearly there is a large difference between the separation of solutes 1 and 2 and 
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N’ 

Fig. 4. Injected and recovered 3-d zonoids. Two solutes + carrier; Gaussian model; Z = 25 cm. 

separation of the carrier with solute 1 or solute 2. We shall consider the meaning and 
significance of convexity in Section 5.5, under the heading “Selectivity” at the end of 
this section. A quantitative study of the growth and decrease or increase in separation 
in three-dimensional space and in ground planes will be given in Section 7. 

We wish now to acquire some visual grasp of the 3-D zonoid itself, that is, we 
want to draw its boundary. Although different shapes of the boundary of the zonoid 
arc possihlc, the simplest type of lines covering Z is provided by zonal lines or zones. 
Let us postpone the construction of such lines and suppose here that we have 
constructed a set of such lines. 

We arc in position to “see” the 3-D separation balance defined in Section 4. 
Recall the fundamental property of zonoids: M is feasible by mixing from the effluent 
of the column iff it belongs to Z. 

The initial or injected zonoid, Z0 (Fig. 4), is a vertical parallelogram constructed 
on the vectors (1, 1. 0) and (0.0, 26). The final or outlet zonoid, Z, may be drawn as 
a slanted ovoidal box: the quasi-vertical part of Z corrcsponds lo almost pure carrier 
(part in front, part to the rear of the peaks). and the top and bottom correspond to an 
effective separation between solutes. 

Clearly zonoids Z0 and Z intersect themselves (in the sense that they have 
common points although none is contained in the other), a general fact of great 
importance in view of the fundamental property of CSM: more precisely, mixtures 
ME Z, M 6 Z,,, feasible from the final separation state are not feasible from the initial 
state because they do not have the initial composition in solutes and conversely, 
mixtures M 4 Z, M E Z0 feasible from the initial separation state are not feasible from 
the final state because they are too rich (or too poor) in carrier. 

Finally, one may look at canonical prqjections of Z on coordinate planes, which 
of course are zonoids and therefore centrally symmetric convex sets (Fig. 5). 

We give a projective construction of zones using simplex AZ, which provides also 
a geometric rationale for eqns. 13-15. 

Consider a plane H,,, passing through the origin. I7,,, intersects simplex A2 along 
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N’ 

Fig. 5. Canonical projections of the zonoid Z on coordinate planes: Z,*. Z13. Zz3. Conditions as in Fig. 4. 

line PQ. Suppose P, Q are on 11, located at parameter values ti, t2, i.e., they have 
coordinates x(t 1), x( t2). Therefore, DM is an oriented plane spanned by F(t,), F(t2). 

As Z is convex, we associate to n, a pair of tangent (or, more generally, support) 
planes TM,, 7’M, with Ml, M2 the contact point on SZ. Recall that domain of 
integration 0) + for any point M on ?Z is defined by a value t such that eqn. 15 holds: 

F(t,) A F(t,) A F(t) 3 0 or x(tl) A x(t,) A x(z) b 0 (36) 

Therefore, cc)+ is the set of the points of 7 which are in the positive half simplex plane 
defined by PQ. w- would be defined symmetrically by inequalities 60 in eqn. 36. 

To generate zone L(t,) we just rotate line PQ in A2 around fixed point P. We 
obtain two symmetrical points on the zone, M1, M2 E L(t 1) by integrating flow-rate 
family upon CO+, ~6. Now two cases arise: 

(a) y is a convex curve, i.c., selectivity is 3-regular: PQ has no other intersection 
point with 7,‘. Letting t = t2 vary. we obtain a parametric expression of zonal line L(t 1) 
as the sum of the union of the two subfamilies: 

which is exactly eqn. 13. The first subfamily does not depend on t and its sum defines 
point N(t,) on the cumulate curve. When t varies, the sum vector of the second 
subfamily is just what is obtained by drawing, in the reverse order, this part of the 
initial family, going from dt to t. The zonal line can be completed through symmetry 
about the centre of Z, or the above reasoning can be made, with 0 < t -c tl as the 
complementary subfamily defines the symmetrical part of L(t,). 

(b) y is not convex, i.e., selectivity is not 3-regular: the above construction has to 
be modified. For each position of line PQ one must look at all cut points of PQ with y. 
If only one other than P exists, we obtain the same case as before and construct M(t) 
accordingly. If more than one exists, e.g., of argument t2, t3, M(t) is the sum of the 
union of all subfamilies whose elements point in the positive half-space defined by HM. 

Indeed. y need not to be a convex curve in d,. _ In fact, convexity requires,-as we 
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shall see in Section 5.5, N d N,, where N, is the critical number of plates, or, 
equivalently. : < -I~. where zC is the critical abscissa in column. 

Note the geometric rationale for eqn. 15: contact points M, or M2 are attained 
when planes parallel to fl,,, passing through M. the sum of any subfamily, cannot 
recede further from the origin. But the plane recedes or not on adding F(?)dt to the 
subfamily according to the sign of the dot product <q, F(t) >, where ‘1 is the 
coefficient vector of plane 17,w. Now, in view of the well known fact that mixed product 
F(t,) A F(/J A F(t) = <II. F(T) >. this amounts to including F(t)dr in the subfamily 
according to the sign of the mixed product, which is exactly the meaning of eqn. 15. 

Zones form a system of lines which cover ?Z and do not intersect themselves. 
except trivially, at the origin and at S, thedistal point of Z. and at two antipodal points. 
In Fig. 4, the shape of the zonoid corresponding to Fig. 1 is sketched, as a perspective 
view. by such zones. Each zone. such as L in Fig. 4, is defined by its starting point (and 
tangent vector) on I- and therefore r E SZ. It is smooth except at 0, Sand at points on 
r. 

4.5. A stuc(y of’3-regular .sefet~tivit? 

One may note in Fig. 4 that every zone passes through 0 and S = N,,. Such a 
property is not guaranteed in general and results from what we have called the 3-regu- 
larity of the differential family. This is the first time that selectivity acquires an intrinsic 
(geometric) definition, that is. one independent of any model involving, e.g., affinity 
ratios. n-Regular selectivity (n-RS) is a rather intricate topic, but a crucial one in both 

separation and zonoid theory. We leave a thorough study of selectivity for further 
work, noting only that one may conjecture that the “ordered” ion-exchange systems 
detincd by Tondeur [ 151 exhibit n-RS [although not (n + I)-RS, taking into account the 
carrier]. One could study also the “selectivity reversal” along the same lines. It will be 
more and more apparent that the properties of Z depend heavily on the convexity 
propertics of the plane curve 7’. in the molar simplex A2 defined in Section 4. Here, we 
shall study sclcctivity from geometric, then algebraic, points of view and show how the 
loss of selectivity can be monitored directly on the chromatogram. 

4.5. I. A gcrrerd geometric condition 
Selectivity can be monitored directly from :’ in simplex AZ. Indeed, the physical 

meaning for 3-regular selectivity stems from Theorem 6: 
Family S = (F(t)drl,,J, is 3-regular iff F(I) is extreme in 9, i.e., a mixture of 

composition x(t) cannot be made by mixing from other elements of 4. 
Therefore. in some way. each differential vector (or composition) delivered by 

a 3-regular process is “new”. Looking at Fig. 3. we see that selectivity is 3-regular (or 
seems geometrically to be so). Taking each vertex of A2 in turn we obtain that the 
selectivity between species I,2 is 2-regular: any 3Q line cuts the curve y only once (from 
convexity of 7). In contrast. selectivity between species I, 3 (or 2,3) is not 2-regular: 2Q 
(or 1Q) lines cut the curve ;’ (convex and closed) at two points. 

It is now apparent that selectivity is not stable by projection. We may say that 
3-regular selectivity reversal occurs at points (if any) where y acquires an inflection 
tangent. However, selectivity (or, as we shall see. values of critical parameters for 
selectivity reversal) do not depend on the injected quantities of solutes as long as the 
model remains linear. 
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(N = 250), near 3-regular selectivity (N = 500) and 

To see the influence of the abscissa in the column on selectivity, the curves y at 
different values of N are drawn in Fig. 6. 

Notes 
(1) The rule of decreasing maximum flow-rate (or concentration) of peaks on 

progressing along the column materializes into a monotonic rotation of tangents to 
y around the vertices relative to pure species 1 or 2 in Fig. 6. y shrinks to point 3 when 
N increases. 

(2) The overall shape of 7 depends on N: for N 2 500, a depression appears on y; 
y is discontinuous for initial family Y(0): it is composed of two points Z, and vertex 3, 
which stresses the fact that the flow at the column inlet is not a smooth (and not even 
continuous) function of time. 

4.5.2. An algebraic condition ,fiw 3-selectivity 
The results will show the similarities and differences between models I, II and III. 

A study of the Wronskian matrix allows one to locate singularities in the plane of 
independent variables (N,t), for differential families (in the sense of 3-selectivity 
reversal), in terms of pairs (NC, t,), where N, is the number of plates at which singularity 
occurs, t,, the time of appearance. on the chromatogram taken at N,. 

F(t) has continuous derivatives of any order, then, from Theorem 5, convexity of 
;’ is equivalent to condition 13 involving the Wronskian matrix of the flow-rate F’(t), 
i = 1,2,3, W(F) (in another context, see Karlin [13], Theorems 2-l and 2-3). 

Taking in turn matrices in the last column in Table 1 (where the maximum of 
possible factorization in lines or columns of (strictly) positive common terms 
comprising F’F2p has already been made), we obtain, after expansion, the following. 

The general idea is that, in view of the linearity in N of W(F), we look for the 
maximum value of N such that W(F) remains non-negative for all values of t. For 
different models, see the corresponding entries in Table 2. 

Taking, for example, model II, selectivity is 3-regular iff W(F) >, 0, i.e., 

(37) 
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using linearity in N. Clearly, the product containing f in eqn. 37 is negative, and the 
minimum for t = t, with 

i2 + & t,= i=- 
2 (38) 

Max is attained for t, and leads to the following condition on N: 

(39) 

We may rewrite the selectivity condition relevative to model II as a function of 
equilibrium parameters: 

Models I and III lead to a slightly more intricate Wronskian matrix and condition, but 
the method is similar and the results are given in Table 2. 

Remarkably (see Table 2), NC given by condition 39a appears to be model 
independent, i.e., its value is the same for models I, II and III. However, the critical 
times t, given in Table 2 differ slightly, reflecting the difference between the peak 
shapes in these models. A geometric interpretation will be given below. 

Note that except for the leading factor t2 - il that is in line with the fact that 
W(F) tends to 0 when z tends to 0 (solutes tend to be identical), W(F) is, for all models, 
a second-degree polynomial in t, which means that y will have two inflection points for 
N > N,, the parameters of which are roots of these polynomials (see Fig. 6, case N = 
750 and 1000). 

Therefore, 3-regular selectivity inversion N = N, is just the condition for the 
existence of a “double” inflection point (i.e., a point where the tangent has a contact of 
order 4) on y and this point occurs at parameter t,. 

Under the conditions of Fig. 1, the formulae in Table 2 give for models I and III 
N, = 484 plates and tc = 112 s. With the isovariance assumption, N, = 484 plates 

TABLE 2 

WRONSKIAN AND CRITICAL PARAMETERS 

-Model w(F) N, 1, 

III Nt2 - t(N - 1)(i2 + iI) - (N - l)i& 
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and t = 110 s, results not significantly different from the other (more rigorous) values. 
In any case, separation is far from complete at the critical number of plates. 

If, for model I, II or III, the (unique) condition 39a is not fulfilled, i.e., if the 
number of plates at the location of observation exceeds the critical number, y is not 
convex and this introduces many complications in the study of zonoids and separation, 
including the fact that the volume of the zonoid must be computed as the integral of the 
absolute value of a function changing sign on a domain which may be intricate. 

4.5.3. Comparing 2- and 3-selectivity for solutes 
We may now compare algebraic conditions for 3- and 2-selectivity for solutes. In 

view of the constant carrier flow-rate, these two conditions involve only minors 
extracted from the two first lines of the Wronskian matrix relative to the model. 
Therefore, working on this sub-matrix gives all the information needed regarding 
selectivity for solutes. 

For curve r 1 2, the canonical projection of the graph of N(t) into plane (1,2), i.e., 
dropping the last coordinate in N and F, 2-regular selectivity amounts to 

N’(t) A N”(t) = F(t) A F’(t) > 0 (40) 

which simply means that the curvature vector always stands on the same side relative 
to the tangent vector, a classical condition for convexity. 

It is clear that the 3-regular selectivity condition W(F) > 0 reduces and implies, 
in the case of a constant total flow-rate, a higher order (stronger) condition on 
derivatives of flow of solutes only, namely 

N”(t) A N”‘(t) = F’(t) A ,“( t) >, 0 (41) 

These conditions are linked geometrically: if condition 42 is fulfilled, rr2, or the curve 
yl 2 defined by (F’(t), F’(t)), in plane (1,2) is convex. The vertical translate of y12 with 
length F3 (which means dilution by a constant flow of carrier) defines a convex cone 
with apex 0, the intersection of which with LI, is 7. Therefore. y must be convex in d2: 
we recover the condition of constant sign for the Wronskian determinant in three 
dimensions. 

4.5.4. Reading 3-selectivity condition on~chrornatogram 
In practice, it is very easy to monitor the loss of 3-selectivity for model I, II or III 

(which is usually the one flow or concentration experimentally monitored). Indeed, 
a sufficient condition for following eqn. 42 to be satisfied as an equality at the limit of 
t = t, 

F’( tc) A F”(t,) = 0 (42) 

is clearly F”(t,) = 0. As, in fact, F” depends on N, we simply obtain, for two solutes, 
two non-linear equations in two unknowns, t, and N,: 

F”‘(t,, N,) = 0, F2”( t,,N,) = 0 (43) 
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where derivatives are understood to be relative to t. Dimensionally, there is room for 
a solution of this system. Indeed. a solution of the system of eqn. 43 gives back those 
found through annulation of the Wronskian determinant. 

A geometric interpretation of this result is the proposition that if inflection 
points on the chromatogram of solutes appear at the same time t at location x in the 
column, 3-selectivity reversal occurs at (x.t). Clearly this holds for any model with 
a constant flow of carrier. Therefore, any composition of injected quantities will satisfy 
eqn. 43 and especially (F’ + I@)” = 0. 

On the chromatogram of total flow-rate of solutes, r;“ + F2, such a point of 
coincidence will correspond to a tangent of order 2 at the 3-regular selectivity reversal 
time, since clearly (F1 + F’)” = 0. Further, in any linear model, the coincidence point 
will stay fixed for any composition (or quantity) of injected mixture. 

For model II, at time t,, the tangent will have a slope proportional to 

Therefore, half-way between the maxima of peaks, an inflection tangent begins to 
appear at 3-selectivity reversal on the total flow-rate F1 + P (Fig. 7; see Fig. 1 for 
chromatogram of individual species, especially the corresponding chromatograms for 
2 = 50 cm, and conditions). 

It should be noted that the simple expression of 82 in Section 4.4 as 
a parameterized surface does not hold true in the case of non-3-regular selectivity: 
some depressions would appear on the surface given by equation 13 which therefore 
could not be the boundary of a convex body. 

The link with the bitangent line and the depression nascent between peaks and 
non-3-regular selectivity shows that the loss of 3-regular selectivity is a necessary 
phenomenon to obtain u good separation. This could be expected from the simplest 
translation model of rectangles, the study of which is left to the reader. 

Hence the effect of diffusion is twofold: diffusion smooths out discontinuities in 
y. and ensures a progressive shrinking of y into vertex 3 of A2 when z increases. 

We shall return to the study of zonoid projections and evolution in Section 6. 

Flow-rate 
0.1 

I moksls 

0.08. 

0.06.. 

0.04.. 

0.02. 

solute1+2 

II z=25cm 

Fig. 7. Total flow-rate of solutes in the case of 3-regular selectivity (z = 25 cm), just after selectivity 
inversion (z = 50 cm), in the case of non-3-regular selectivity (z = 75. 100 cm). 
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4.6. Generulizations and comments 

Canonical projections of zonoids give the separation state of subsets of species. 
The number of such canonical projections depends on n. For n = 3, we may group 
canonical projections into four subsets with (1 3 3 1) elements, that is, one 3-d zonoid 
(ternary separation), three 2-d zonoids (binary separations) and three l-d zonoid 
(segments on the axes). Adding further the “dummy” O-d zonoid, reduced to the origin 
point, we complete the variety of zonoids necessary to obtain a full picture of a ternary 
separation. It is significant that for l-d zonoids, the separation balance reduces to 
a species balance; therefore, the latter appears as a special case (in one dimension) of 
the former. 

This leads us to infer that, in general, the number of r-d zonoids to study for the 
separation of n species is the kth coefficient of the binomial expansion of nth order, 
which is indeed true. Hence there are 2” - 1 non-zero zonoids to study in the general 
case. These should be completed by the choice of appropriate projections or 
intersection with planes to fit special problems if needed. 

Even in the simple models presented here, one finds complex features for 
selectivity, including changes along the column: 

(1) 3-regular selectivity or not; 
(2) absence of 2-selectivity between carrier and any solute; 
(3) 2-selectivity between the two solutes. 
Combined with the above comment, this gives a hint of how intricate and rich the 

study of separations can be for even a moderate number of species. 

5. 1s CHROMATOGRAPHY A SEPARATION PROCESS? 

A quantitative (although not scalar) assessment of separation evolution in 
chromatography involves the evolution of zonoids “passing through” the abscissa z in 
the column, in addition to its canonical projections as a function of Z. 

The motivation for the study of prqjections comes from the following: 
a canonical projection has physical meaning; we neglect the content of species along 
which we project and consider only (partial) separation associated with remaining 
species. Therefore, although we are “interested” only in separation between solutes, 
we must consider in turn the three canonical projections of Z(Z), then the 3-d zonoid 
itself. 

5. I. Separation between a solute and carrier 

5.1.1. 2-Selectivity and convexifkution in the plane 
The condition for 2-selectivity of separation of a solute i and a carrier is 

pr&F(t) A proji,F’(t) 3 0 

and the left-hand member is the corresponding minor on the Wronskian matrix 
W(F). For model I, II or I II, we obtain (see first two columns in square matrices, Table 

1) 
ti -- t 3 0 
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Therefore, 2-selectivity reversal occurs at the maximum of the peak of the solute. As we 
consider only two species, we can apply the mixing convention (which would not be 
possible in three dimensions). That 2-selectivity between a solute and carrier is not 
regular could be anticipated by comparing projections of cumulated curves on planes 

(L3) and (2,3) in Fig. 2 with corresponding projections of 2 in Fig. 5. 
lnstead of a canonical projection of 22 to obtain, e.g., aZ,,, we may construct 

8Z, 3 directly from the chromatogram of solute 1 in species 3 or from its cumulate curve 
C, using a method that we shall call convexification. Customizing eqn. 15 for 2-d space, 
we obtain 

SZ+: M(t,) = 

o+(t,) = (r ~[O,dz] 1 F(t,) A F(z) > O> 

Eqn. 44 can be recast, using a new (reduced) family P* obtained through use of the 
mixing convention on 9, both of these generating same separation state. Although in 
essence the mixing convention amounts on the chromatogram of the sum of the 
flow-rates at same molar ratio of species i to the carrier, care must be taken of the very 
nature of a l-differential family (which contains dt). In the following, boundaries 0 and 
dt are assumed to be taken such that the molar flow-rate of solutes are equal (and 
arbitrary near to zero). 

Reduction of family -9 

Let t,,, be the retention time of the peak maximum and consider 9’ as the union 
of two sub-families, 

Given t E [0, t,,,], we consider the solution t’ E [tmax, At] of the equation 

F(t) A F(t') = 0 

As F(t) = (F’(t), F3), and F3 = constant, this amounts to the scalar condition 

F’(t) = P(t’) 

For any “peaked model”, this implicit equation defines a monotonically 
decreasing function t’ = f(t) of class C’. We may therefore apply eqn. 1 for change of 
variable in 9 2, noting that f ‘([tmax, At]) = [O, t,,,], and we obtain 

972 = df -Fof(t)dr.dt 
~~[W,,,l 
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Owing to the definition of function,f, F a,/(r) = F(r). Evaluation of the derivative is 
straightforward by use of the implicit function theorem 

dl;l(,) 
df dt 

dt=dF’ 
*f) 

Adding sub-families .9i and .P,, which are now expressed with the same parameter t, 
we obtain identification 

(45) 

,F* = {F*(r)dt} 0 G t < t,,, is called the reduced family and allows one to construct 
?Zi3 directly by drawing the cumulate curve of .F* through 

&I.. 

FZ+: M(t) = I F*(z)dz, 0 < t < t,,,ax (46) 

I 

?Z-:M(r) = 
s 

F*(r)dr. 0 < t < t,,, 

0 

In the case when F’ is even (e.g., models I and II). symmetry around t,,, implies t’ = 

anax - I, and therefore eqn. 45 reduces to an explicit result: F* = 2F. However, it is 
not so in more general cases (e.g., model III) and t’ is, in general, not known explicitly. 

Fig. 8 shows how points A and A’ on cumulated curve C with parallel tangents 
map onto a unique point A* on the convexified curve C* = r. 

I- 

Solute 1 

0.8.. ma 

0.6.. 

0.4.. 

0.2.. 

cnniel 

4 8‘ 19 Id 20 24 

Fig. 8. Sigmoid curve C of cumulated quantities (solute, carrier). Convex boundary curve r = C*. 
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This method extends itself readily to a non-unimodal chromatogram of solute 
i (including more than one cycle, for example) but is, in general, not valid in n-D space, 
I? > 2. 

5.1.2. Construction of 2-D zonoid 
Let F be given by eqn. 30. Then, for a unique solute i and carrier 3, we obtain the 

equation of ri3 in the parameterized form (for model I or II): 

Ni(N, t) = 2N’, er 

(47) 

N3(N,t) = 2F3(< - t) 

Convexity off i3 stems from construction and can be shown directly through convexity 
of the function erf(x) for _Y E [ - CG, 01. 

Some remarks are in order: 
(a) The mixing convention is applied here only to the projected family: in the 

complete family, the simultaneous presence of solutejprevents colinearity occurring at 
times ti - A, ti + A. Therefore, it is clear that the mixing convention will give, in 
general, different results depending on the canonical projection, that is, on the species i. 

(b) Z(z) is unbounded in the time axis direction as support of the solution of the 
diffusional model extends to the whole time axis (or the positive axis R+ for the 
Poisson model). As already noted, we restrict ourselves to an interval dt of R+ 
supporting “essentially” all the peak. Note that a rigorous study would involve 
unbounded zonoids. It is not too difficult to show by extending the boundaries of 
segment [0, d t] that this would not change the final conclusions concerning separation 
evolution (inclusion), but would give a useless (infinite) 2-volume of separation, thus 
showing a major drawback of use of these volumes as an index of separation. 

Applying this to model II (isovariance assumption), we obtain a simple result 
(which was to be expected as in mode1 II peaks of solutes at given z deduce themselves 
by translation). 

The separation zonoid between species and carrier is independent of species (for 
model II): 

z12 = 213 

[except for a trivial linear dependence (linearity) on injected quantity of species, and as 
long as the time interval is sufficient]. 

5.1.3. Evolution qf separation state 
Making first a geometric study, let us compare families of curves f is(N), i = 1,2. 

One uses the geometric invariance of ri3 in a regular change of parameter (depending 
on species i). Then (Gaussian mode1 I or II), taking 8i = ti - t leaves r invariant; this 
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l- 

solute 1 

0.8.. m”‘a 

0.6.. 

Fig. 9. Evolution of 2-d zonoid (solute I, carrier) lower boundary. z = 25, 50, 75, 100 cm. 

amounts to set time zero at the peak maximum and to reverse orientation of the time 
line (F is an even function). 

In a second parameter change, ri = fi:. eqn. 47, of ri3 becomes 
L 

M(tj) = 2N’, erf(ri), i = 1 or 2, 0 < ri < m (48) 

That is. all curves I’i3 map onto the graph of erf(_u) over R- by a linear application of 

diagonal matrix [A] with elements . Then curvesTi3 do not intersect 

(except at the origin; note that this precludes these curves from having exactly the same 
sum vector) and lie above one another for increasing values of N. A decrease of the 2-d 
zonoid Z13 is clearly visible in Fig. 9. 

We have thus established inclusion 

Zis(Z’) 3 Zi3(Z) if 2’ < Z, i = 1,2 

which amounts here to be existence order 
Z(z’) on planes (1,3) or (2,3). 

Zi3(Z) < Zis(Z’) ifz’ < Z, i = 1,2 

(recall proji3 Z = Zi3) 

between canonical projections of Z(z) and 

This leads us to an important and simple conclusion: linear dzffusional chromatography 
is a mixing process between carrier and a solute. 
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5.1.4. Mixing kernel 
Making now an analytical study, we give direct proof that solute propagation is 

a mixing process between solute and carrier by exhibiting a sampling kernel. 
In view of the definition of a mixing process given in Section 2.3, we may enquire 

directly about the nature of the process. We must exhibit a mixing kernel ,l according to 
eqn. 21 and 21a which allows one to obtain a differential family of flow-rate vectors 
obtained at N + d/V plates from that obtained at N plates. 

Looking, e.g., at solute I, the flow-rate family at N (see Table I) is similar for 
models I or IT: 

As the second component of flow is constant, eqn. 21a will directly ensure the mixing 
properties for carrier species. Therefore, we need only to study the flow of the solute. 

Starting from the following identity, which expresses the classical property of 
additivity of variances (see Appendix for a proof using Fourier transformation): 

we obtain, on identification of the left-hand term with the flow-rate at N + d/V plates, 
calling a” the square root of variance at this location, and use of eqns. 27 and 29. 

i7= 
(I + k’)&VH (1 + k’),/~H 

3 0” = 
zt I.4 

hence 

Therefore, family F-(/V + A/V) (up to translations of time scale to obtain centred 
distributions, i.e., 1.4’ = t - T,, t = t’ - &) results from family B(N) by a mixing 
process with the mixing kernel: 

and property 21a stems from normalization of the area under a Gaussian curve. 
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Note that the above mixing kernel derives also from a Gaussian function and is 
a convolution kernel. Also, the above result holds for an unbounded quantity of 
carrier, i.e., for t E R. 

Of course, the existence of a mixing kernel is linked with the fundamental fact 
that diffusion (as represented here by the increase in variance of a Gaussian curve) is 
basically a mixing process, a fact that can be traced back to the diffusion equation and 
will be emphasized in future work. 

5.1.5. 2-Volume of separation bemeen solute and carrier 
Although a direct integration can be made using eqn. 48, it is simpler to use the 

linear transformation T of matrix [A] defined in Section 5.1.3. 
In view of the fact that for the unbounded (rigorous) case, when the quantity of 

carrier is infinite, the area in the rectangle of total separation, under the curve Tis, stays 
finite, we introduce the following. 

The loss of 2-volume is the area ci3 of the complement of 2-d zonoid to the 
rectangle of total separation. 0 

Let c be the area under the graph of erf(_$ over R-, i.e., 5 = 
s 

erf(s)ds = 

--a! 

1 
-. Through transformation T- ’ 

J-- 2n 
, [ will be multiplied by dat [A]- ‘, so that we obtain 

- 

Therefore, for separation 2-volume (pairs 1,3 or 2,3) we obtain 

(4% 

as long as sufficient carrier is allowed to contain virtually all the solute. Recall that area 
E. = N’,FsAt is unbounded if At -+ GO. 

At a given retention time for solute i, we obtain <is, proportional to </fi, i.e., the loss 

of 2-volume diminishes if we increase the number of plates or, for a given z, if we 
decrease the HETP. 

Eqn. 49 may be given in a different form: introducing z\, the residence time of 
1 + k’ 

solute per plate, 7: = H - ~ 
u ’ 

an interesting statement can be made: in linear 

diffusional chromatography, ci3, the loss in 2-volume of separations between carrier 
and solute i, increases as the square root of the number of plates and as the residence 

time of solute per plate. The 
i and carrier is given by 

rate of decrease in 2-volume of separation between solute 
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A conclusion may be drawn in another way: although the separation between 
a solute and a given quantity of carrier decreases when z increases, i.e., zonoids become 
smaller as the column length increases, nevertheless, a given increment of length has 
less and less influence on mixing; this can be related to Fick’s law, which states that the 
flux is proportional to the gradient of concentration. Indeed, the effect of a constant 
increment of column length on the mixing is clearly visible in Fig. 9, as the relative loss 
area ratios are I, 1.41, 1.73 and 2. 

These conclusions all fit fairly well the “intuitive” (qualitative) thinking about 
what the effect of these parameters on separation should be. 

5.2. Separation between two solutes 

Consider now the separation between solutes 1 and 2, that is, the canonical 
projection on the plane (l,2) of the three-dimensional zonoid. We must first construct 
proj(Z) and then study its variation with N. 

5.2.1. Study of 2-selectivity 
Model I: taking the leading minor in W(F) in Table I, we obtain the 2-selectivity 

condition 

1 
(r - t1) _~ 

(tl)* 

w(pr0.i 1 *F(r) A proj,$‘(t)) = sgn 
l _(t 1 ?Z) 

02 

-- T _ . 

=Sgn(?r-i,)(l-a)= -1 for,>*>$ 

(50) 

The sign is constant for any practical conditions, as the above inequality in t is always 
satisfied when a non-negligible flow of solute 1 or 2 occurs, for sufficiently high N. This 
means that, on the cumulate curve r r2, the inflection point is very near to the origin. 
Presumably this inflection point is an artefact of the approximation of the peak shape 
by a Gaussian curve. 

To make this point precise, let us make a comparison with model IT. Now W(F) 
leads to the 2-regular selectivity condition taken from Table I, or just equating 
denominators to c in the determinant of eqn. 50. Similarly, model III leads to 
a 2-regular selectivity condition also taken from Table I: 

N N-l 
I -+- -- 

11 1 

I = sgn = sgn(rz - Fr) 

I -- 
N+N-I 

tz t 

(51) 

which is clearly always satisfied since i2 > iI. 
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The family of flow-rate vectors (models II and III) therefore possesses 2-regular 
selectivity properties. Then, from the chromatogram, the construction of a convex set 
of mixtures is very simple: integrate F from 0 to t, to obtain dZ_. The tangent to Z at 
point N(r) is parallel to F(t). 

Returning to model I, we can trace the lack of 2-regular selectivity to the 
following: the peak of species 2 is slightly more diffuse than that of species 1 (& > El), 
and indeed this stems from the influence of retention time on the variance in eqn. 28. 
Therefore, at some early value of t. species 2 will supersede species 1. In fact, model I is 
valid only asymptotically for the Dirac inlet distribution and high A/. This view is 
confirmed by the fact that, if we equate the variances of the two peaks, that is, if we pass 
to model IT, f is convex on R as the factor containing t in eqn. 50 drops out. Hence 
a lack of 2-regular selectivity points to a discrepancy between the model and physical 
reality, a satisfactory result. 

Physically, 2-selectivity for species 1, 2, means that in the flow passing through 
location z, species 2, the more retained species, increases in purity as time goes on. 

5.2.2. Construction of 2-D zonoid 

Consider, e.g.. the Gaussian model I, neglecting the above-mentioned inversion 
of selectivity. Projection r 12 of the cumulate curve N(t) is a convex curve. Therefore, 
the (half) boundary of Z12 has a parametric equation: 

N’(N,t) = Nkerf J# ( .y), tE[O,At] 

N2(N,t) = N; erf fi ( .S$) 

(52) 

Convexity of r 12 is towards the axis of the more retained species. 

5.2.3. Evolution of separation state 
A quantitative study of the growth of zonoid Z12 with z covers both relative 

positions of Z and area growth. Through a change of parameters (already done in 
Section 61.3.). 

- - 

we obtain 

M(r) = N’,erf(zi - r).rt[O.fi*$], i = 1,2 

Accordingly, the peaks representing the flow-rate are translates of affine Gaussian 
curves with S, the reduced translation parameter: 

(53) 
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Fig. 10. Growth of separation, zonoid Z12. I_ = 25, 50, 75, 100 cm. 

Evolution of the zonoid of separation is therefore a function of 6, valued in the set of 
zonoids (of given sum vector in 3-D space) (Fig. 10). 

Inclusion is then simple to show: at any given T, increasing 6 makes the second 
peak recede from the first. thus P(r) decreases. The point on i7Z- moves towards axis 
1 on the vertical above N’(z), thus proving inclusion. Note that slope of the tangent 
at N’(r) decreases if r < ~~ + 6 and increases if r > r1 + 6. 

Calculation of the law of increase of 2-volume of separation with S is less easy 
(see Appendix) but gives a simple result, both as a first-order expansion of B and in 
general. 

From eqn. (A5) (set Appendix), we obtain for the Gaussian isovariant model 

(54) 

and at first order, for small 6 (i.e.. for N -X N,) 

where the last inequality amounts to N 8 N,. Therefore, at incipient separation, 

2-volume increases as only as ,,I% or, conversely, the rate of growth of 2-volume is 

infinite at N = 0, and decreases as l/J% because 

This relative inefficiency of theoretical plates in the process can be traced back to the 
fact that separation is produced only in part of the column, the width of the signal 

being approximately proportional to fi. Remarkable also is the grouping of x and 
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N into a single factor. which is indeed linked with resolution R = RI2 = 2 

(where 1~‘~ is the distance between the intercept of the inflection tangents with the 
baseline), since (for two Gaussian peaks of equal area) 6 = 4R, we obtain 

4R Z N_ 
-12 - 

J- 
rc 

However, 
expansion 

the use of these 
(eqn. A8) is valid - 

approximations is severely restricted, as first-order 
only in the cases of difficult separation (a z 1) and 

incipient separation [d/V(c( - 1) c< I]. That condition of incipient separation is usu- 
ally not satisfied in practice as one aims for a resolution of about unity between peaks. 
However, R is restricted to be lower than about 5 if the above equation is to have any 
chance of being valid, i.e., to give a value lower than 1 (and, in this instance, it is hardly 
measurable from the chromatogram). Finally, as concerns resolution, it is not difficult 
to prove that at the 3-selectivity inversion point, N,, R = 0.5 for model II. 

We may state that for a difficult separation. when peaks are not too well 

separated, the rate of 2-volume production for solutes 1, 2 is proportional to fl. 
Note, however, that area is of limited interest here and can even be misleading; 
a complete study should encompass growth of the zonoid itself. 

The study of canonical projections of 2 leads to a remarkable conclusion 
concerning binary separations, namely that linear chromatography (models II and III) 
with diffusion is a separation process between two solutes, a mixing process between 
a solute and carrier. As linear diffusional chromatography is neither a pure separation 
nor a pure mixing process, it must be a sepmix process. Note that, although drawn 
from studies of binary separations, this conclusion also holds for ternary separations. 
Indeed it is a sufficient condition for a process to be sepmix that two 2-D projections 
exist in which the initial and final zonoids are not ordered in the same way. 

5.2.5. A generalization to n solutes 
We generalize the results in Section 5.2.1. to the separation of any number of 

solutes: using Polya’s frequency functions (PF) we obtain the following general 
theorem, holding for any number of solutes. 

Theorem 
Gaussian isovariant and Poisson models give rise to l-differential families 

endowed with regular selectivity of any order between solutes. 

Proof 
Refer to Section 2.2.3. on PF functions. Clearly Ej may depend on i and 

j through constant multipliers, e.g., fl_ 
r12 

Take model IT. We show first that e-2 is a PF density. Let L(xJ) = eXy. 
Clearly all minors of the generalized Vandermonde matrix n x p of elements Lj, 
Lf = eXIYjare positive for any two finite linearly ordered sequences: x1 < x2 < . . . < x,, 
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1’1 < ?‘2 < . . . < ,I’,. Therefore. through multiplication of lines and rows by constant 
factors, 

enjoys the same property and is of the required form for a PF function. As it is 
integratable on the real line, it is a PF density. Use of transformation property I of PF 
functions given under Theorem 6 gives immediately the desired result that F’, for 
model IT, i.e., for a fixed variance (eqns. 31 and 32) is generated by the PF function 

For model III, we show first that P(NJ.) = 
I 

-. e-“LN is a totally positive 
WW 

kernel. Starting anew from the generalized Vandermonde matrix generated (this time 
directly) by iN. we obtain the result by multiplication with l/T(N) and e- A. F’in eqn. 34 
is a PF function replacing _rj with In tj, xi with In 6. 

5.3. Separution between solutes and carriel 

An overview of the character of chromatographic separations is gained by 
a three-dimensional representation of the zonoid rather than from the two-dimen- 
sional projections, as done above. 3-Selectivity was studied in Section 4.4, as it was 
necessary to draw the boundary of Z. Calculation of the volume of the ionoid is not 
a simple matter, so we shall attempt first to draw qualitative “visual” conclusions. 

5.3.1. 3-d Zonoid comparison 
The influence of z for given operating conditions can be seen in Fig. I I. Only the 

bottom half of the zonoid boundary has been represented. 
At z = 0, the injected zonoid is a vertical parallelogram, as the mixture of solutes 

and the pure carrier are separately available. Therefore, clearly. if solutes are to be 
separated to some extent, the resulting zonoid must not project on a segment, i.e., no 
inclusion property between zonoids can hold: the process must be a sepmix. In fact, the 
construction of zones used assumed 3-regular selectivity, which is true in the cases in 
Fig. I la and b, approximately true in Fig. I Ic and false in Fig. I Id. 

Note that increasing the time cycle At by 6t would add a vector (E~,E~,F~&) with 
small pi, ~~ to the initial and final families, or, equivalently, expand all zonoids with an 
(almost) vertical cylinder of length F3St without adding any really interesting 
information. The 3-volume of Z would then increase by E12F36t. 

The general deformation trends are as follows when z increases: 
(1) Z becomes thinner (maximum vertical width decreases): for a given carrier 

quantity. this means a more homogeneous medium as a given mixture of solutes 1, 
2 can be made with less and less different minimal and maximal quantities of carrier; 
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a : L = 0, 12.5 Cm b:L=25cm 

c : L = 50 cm d:L=75cm 

Fig. 11. Evolution of three-dimensional zonoid along the column. Axes labelling and orientation are similar 
to those in Fig. 4. 

(2) Z becomes larger in horizontal projection (the smallest vertical cylinder 
containing Z grows). 

5.3.2. Evolution qf 3-volume 

We first give a remarkable expression for 3-volume. 

Theorem 
For a family .q given by model II or III, when N < N,, i.e., for 3-regular 

selectivity, 

Proof 
As selectivity is 3-regular, one may drop absolute values and sum for r, in eqn. 

19, which gives 

z” = N(s) A F(s) A F(t) dsdt 

O,<s<tGAt 

(55) 
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Similarly, summing on z from s to At, 

z = N(s) A F(s) A (N(At) - N(s))ds 

O<s<dt 

Using linearity and antisymmetry properties of the exterior product we obtain 

B = N(At) A 
s 

N(s) A F(s)ds (56) 

O~S<~l/ 

We need simply to integrate the three components of the integrand (in A’_/?) and then 
to make the exterior product with the sum vector N(At) = No. 

For the separation of two solutes with carrier by chromatography, the selectivity 
is 2-regular for pair (1,2) but is not so for pairs (1,3) and (2,3). Therefore, eqn. 56 leads 
to 

= - %P23 -N;&,, + N;Z12 Y- (57) 

where 

lntegrands do not have a fixed sign in these expressions. They also depend on At. 
A geometrical interpretation of these expressions is that they give the algebraic area of 
curve N(s) seen from the origin, in plane (1,3) or (2,3). However, a remarkable feature 
is that NAN2 can be put into the first two terms of eqn. 57, in such a way that 
N,!JVg((pz3 - ~~3). q13, (~23 aremapped on [O,l] x R toformacurveclosed at infinite 
[i.e., with (pi3(- xl) = (P~~(- xll) = 0 and cp13(m) = (p13(co) = 11. Then rp,, - (p13 
is the area inside this curve. As in model II peaks are translated by Fz - F1, and so are 
(~~3, qz3, this oriented area is finite and equal to (pz3 - (p13 = -(t, - T1) [(023(m) - 

(p23( - CG)] = -(F2 - G). Therefore, as long as N --c NC holds, 

F - NhNzF3Atr,, - NiN$jF3(i2 - t,) I- (58) 

or 

(59) 

which concludes the proof since Ni = F3Ar. 
Geometrically, one may understand this result as follows. Let us split eqn. 58 
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into two terms, in same way as in eqn. 49. N~N~F3At[12 is 3-volume of a vertical 
cylinder with base Z12, height Nz = F3 A t, which would be obtained if the carrier was 
not an integral part in the process and could be spared (of course a hypothetical case). 
Note that this 3-volume is unbounded when At = CO. 

NAN;F3(c - <) is, dimensionally, a (bounded) 3-volume. Formally, this term 
represents 3-volume of total separation between pure solutes and the quantity of 
carrier which flows between the retention times of the peaks. It does not depend on 
either At, and therefore it is finite, or directly on the efficiency of the process (HETP or 
N). As this term is subtracted from the first term in eqn. 58, it can be appropriately 
called Ioss of 3-volume. 

Finally, one obtains for the Gaussian isovariant model, N < N,, 

where ti can be evaluated using eqn. 29. Therefore, the yield of 3-volume is given by 
(Fig. 12) 

(2erf(J(n- I))_ 1 -@j$.!~” +yjNH 

N 
2bo 400 600 Sbo mm 

Fig. 12. 3-Volume yield w. number of plates. Conditions as in Fig. I, At = 100 s. 

Especially interesting is the rapid (in ,,@ increase in 3-volume creation at the 
beginning, followed by a step-up and a decrease. The mean rate of creation of 
3-volume per plate, c/N, goes to zero at a certain number of plates. Clearly, the 
existence of such a maximum on t is a very important feature for optimization: it 
indicates that one should consider some way of enhancing the efficiency of the process 
beyond this point. 

5.3.3. Evolution qf 3-volume.for three solutes 

For 3 solutes, in the special case of totally regular selectivity, we recognize that 
the components in eqn. 56 are exactly the 2-volumes of canonical projections of Zand, 



IS CHROMATOGRAPHY A SEPARATION PROCESS? 69 

Fig. 13. 3-Volume yield between three solutes vs. translation parameters. 

therefore, we derive the simple and useful expression that 3-volume is a linear function 
of 2-volumes: 

which can also be recast yields in 3- and 2-volume (eqn. 29, with coefficients 
independent of quantities of species: 

Combining the results in Section 5.2.4. and the generalization in Section 5.2.5. 
we obtain for the Gaussian isovariant model the expression of 3-volume of separation 
between three solutes: 

,=2{erf($)-erf(3)+erf(%)i--I (64) 

where 6ij+ given by eqn. 53, is the translation parameter between peaks of solutes iandj. 

As 613 = 6, 2 + aZ3, r_’ is a symmetric function of two independent variables (Fig. 13). 

6. PROBLEM SOLVING WITH ZONOIDS 

A good theory should first integrate previous knowledge and then ask new 
questions whose answers open new avenues. Many separation problems can be recast 
geometrically and given innovative answers. Weconsider below five problems, in order 
of increasing complexity. but clearly they only scratch the surface of a vast subject. For 
many of these problems, the fundamental property of a convex set of mixtures will be 
the critical property. Meanwhile, we shall encounter the extent of separation, proposed 
by Rony [3], and show how well it fits into zonoid theory. Although economy (e.g., 
marginal costs and linear programming) is assumed to give answers to these problems, 
this is not so in most instances owing to the overwhelming complexity of the 
calculations. 
the answer. 

We then need first to answer-on a technical basis, anb zonoid theory gives 
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6.1. A problem of recovery with minimum dilution 

Given a process delivering a family of mixtures by use of a (conservative) 
separation agent, and a mixture of solutes, find the sampling (if any) which will allow 
them to be recovered with minimum dilution in separation agent. 

It is not commonly considered that a sampling function il may, in principle, 
oscillate wildly between 0 and 1. There is no real reason why only “gentle” sampling 
procedures should be the best. 

The answer is given below for dimE = 3, but can be generalized. 
Consider a family 9 and M = (Ml, iW2), a mixture of solutes. If ME Z,,(F), 

M is feasible, and the problem amounts to determining geometrically the point on the 
boundary aZ_ above M. In the case of 3-regular selectivity, in view of eqn. 14, it is 
equivalent to finding tl, t2 such that 

M = 
s 

F(t)dz,O d t, d t2 

or, a segment equipollent to M can be put as a chord on aZ12. 
The minimum quantity of separation agent will then be 

‘2 

MAin = 

s 
F3(r)dt 

If selectivity is not 3- .regular, a more complicated sampling function 
a variant of eqn. 1 5) will be necessary, but it remains gentle. 

(deduced from 

6.2. A problem of yield 

Given a family 9. characterize all mixtures M with a given content M’ of a given 
solute i (i.e., all mixtures with a given yield of solute i). Geometrically, this is 
equivalent to finding the intersection of Z12 (9) by a plane, the equation of which is 
N’ = M’, and must be solved by computer to be represented graphically. 

Strongly related is the problem of chromatographic design. Let us consider the 
existence of a real problem in preparative chromatography (overlooked until now). To 
choose the sampling valves for continuous outlet flow F(t), the designer must answer 
first the question: Is it best to actuate the sampling valve through an “all or nothing” 
command (called bang-bang in control theory) or through an arbitrary, bounded 
command? In the first instance the sampling function is as in eqn. 2 and in the second as 
in eqn. 6. In other words, are they mixtures which can be sampled in the latter (and 
more general) way but not in the former? A sideways question is whether the answer 
depends on the number of chemical species in the flow. The answer is (through the 
Krein-Milman theorem, referred to in Section 2; see comments on Theorem 3) that 
any mixture which can be made by the general sampling approach can also be made by, 
at least, one bang-bang command, a result which justifies everyday practice. 



IS CHROMATOGRAPHY A SEPARATION PROCESS? 71 

6.3. A problem of appro.uimation 

Given a family 9, find a criterion for the optimum recovery of a fixed number 
p of cuts and find the corresponding set of optimum p-l cut-points. 

The answer is to take the p cuts to minimize loss of n-volume. 
This is a problem of approximation of a differential family by a discrete family. 

Clearly we may consider the approximation in the full space in n dimensions (i.e., take 
into account the separation agent), or a projected subspace defined by r “preferred 
species”, e.g., solutes. We must have p k n or p 2 r depending on the case. 

With n = 3. r = 2, the second procedure would involve minimizing 2-volume lost 
in the plane of solutes I ,2. Let us consider in the following p = 2. We have to find one 
cut-point. 

Now, recall that for a binary mixture NO split into two mixtures, N,, Nz, Rony 
[3.4] has defined the extent of separation as 

and this detinition has been generalized by Valentin [2] to a vector extent of separation. 
We shall take N,, = (1,l). In the present theory we should call 5 a yield of 2-volume. 
Zonoid theory gives a physical interpretation which was lacking in Rony’s index. r is 
the yield of 2-volume of Z(N,, N,) (a parallelogram). Now. it is natural, if N, and NZ 
are obtained from a l-differential family of parameter t by a l-cut point sampling at T, 
to ask for t*, the maximum t(r). Clearly, <* is the 2-volume of a (best) approximation 
of Z,2 by a parallelogram. 

In the case of linear chromatography (model II), Rony [4] showed that the 
optimum cut point is located at T* = S/2 and 

6 
E*=2erf - -I 0 2 (65) 

From the corresponding eqn. 54 it is clear that loss of 2-volume induced by the two-cut 
trapping proccdurc is then independent of 6, as long as the linear expansion is valid, 
and therefore. 

Eqns. 54 and 65 set in perspective the effect of recovering only two cuts on the 

length of the column: to obtain the same 2-volume of separation between solutes in 
chromatography with l-cut point, as in differential chromatography, one needs a two 
times longer column. 

Thus <*, the extent of separation. as defined by Rony [3,4], reflects only part of 
the separation produced by the column. Further, returning to the full dimensional 
approximation, one may take into account dilution of the solutes in the carrier, i.e., 
a ternary separation. Now it is clear that a 2-cut procedure cannot be optimal as the 
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3-volume recovery would be zero. This strongly suggests that optimizing a 3-cut 
recovery should be considered for recovering a better part of the separation produced 
by the column and that classification of processes by Rony [ 171 should be re-worked 
accordingly. 

Given a family of mixtures, what should be the criterion for fabrication of 
a required mixture if the next mixture to be made is unknown? 

This problem, also called the paint dealer problem, has been elegantly solved [16] 
using the fact that the probability of hitting a zonoid by a point is proportional to its 
n-volume (for a uniform density of probability of demand). 

This last problem is certainly the most difficult and rewarding: how can one 
match a given separation (e.g., by purity and yield) with some set ofelementary devices 
(e.g., equilibrium stages)? 

The problem can be recast in term of zonoids, as the required separation can be 
represented by a convex set of mixtures ZO (or a set of these if the separation is not fully 
specified). Therefore, the problem is to find an arrangement of these stages which 
produces a zonoid Z1 such that 

A simpler form of the problem is to determine the minimum number of stages in 
a column to obtain products N 1. . . _,IV,. Formalization of this problem is 

Min Z(/V)lN= 1,2,...,Z(N)<Z0 

N 

with 

zo = Z(NI,..., &) and Z(N) = Z {F(N,t)dtj,,,, 

7. CONCLUSIONS 

Zonoid theory has been applied to very simple types of models of chromato- 
graphy. namely the linear diffusional models. The results apply, of course, to all 
processes that can be modelled in this way, e.g., liquid%i~d extraction. The method is 
general and should be a safe guide to the optimization or design of any process, 
including those which deliver families diffuse in 3-D space and time. Although the 
tools may seem very sophisticated and the applications remote at this stage, one must 
stress the probable long-term importance of this theory. Mathematical foundations 
and developments reflect an inherently complex situation and shed light on the specific 
features of chromatography. 
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Chromatography is not a separation process but a sepmix process. From this 
example, one may infer the importance of taking into account properly all the species 
involved, not forgetting the carrier. We have been able to study the three-dimensional 
zonoid of separation and its projections. The separation between species or mixing 
bctwccn one species and the carrier depends on the square root of the length of the 
column or of the number of theoretical plates, and is proportional to SI - 1. 
Chromatography exhibits how the interplay between separations and mixing opera- 
tions may be a delicate one. Indeed, each species mixes with the carrier at the same time 
as it separates from other species. The important concept of r-regular selectivity has 
been defined. 

The same methodology will be used in subsequent work to study non-linear 
effects on separations in chromatography where the power of the theory will be at its 
best; even though the inclusion of a zonoid of separation between solutes is valid in the 
simple model used, there are hints that the general situation is much more intricate. It 
certainly may happen that, owing to different diffusion or strong specific interaction 
effects. one species is better separated from the others when the feed quantity is 
increased. Then no inclusion property of zonoids will hold true and, a fortiori, no 
existence property. 

This study has shown also that fundamental definitions in separation science are 
independent of concepts specific to thermodynamics. The former must define and 
study separation on a “stand-alone” basis. Then the latter may indicate subsequently 
how much separation production can occur, due to restraints imposed by the laws of 
thermodynamics (and also other sciences of matter. such as mass transfer kinetics). 
Basic independence will provide a firm ground for linking the evolution of separation 
in a system with the second principle of thermodynamics; more precisely, this will be 
made through a new general theorem expressing that separation between a carrier and 
solutes cannot increase (in the sense given by zonoid theory) in an isothermal, isobaric 
chromatographic column. 

Among the fundamental questions to be investigated for a foundation in 
separation science along the lines developed here is the following: what are the springs 
of the separation and mixing creation hidden in the equations of motion in fluid 
mechanics and thermodynamics? In this respect the basic simplicity and the global 
nature of zonoids should allow one to concentrate only on salient features of solutions. 

8. SYMBOLS 

C 
D 
E 

5 
H(HETP) 
Z 

J 
k 
L 

Concentration (mol/cm”) 
Diffusion or dispersion coefficient (cm2/s) 
Vector space of quantities (mol) 
Base vector of E 
Flow-rate vector 
Height equivalent to a theoretical plate (cm) 
Interval of natural numbers ( I. . . . , n) 
Chemical species 
Interval of natural numbers 
Equilibrium coefficient, ratio of number of moles 
Length of a column 
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N 

WN 
No 
n 

0 
P 

P 

Q 
R 
R 
R3 
t 

i 

G 
u 

; 

Z 
z 

Number of theoretical plates 
Quantity vector 
Overall (or sum) quantity vector or distal point 
Dimension of the space E, number of species 
Origin 
Hyperplane, point; relative inlet pressure 
Number of regions or of cuts; relative pressure at location z 
Volume flow-rate (cm3/s) 
Vector space of real numbers ( - co, + a) 
Resolution 
Usual Euclidean space 
Time, retention time; current parameter on a curve 
Arithmetic mean of retention times 
Retention time of species 1 
Speed of carrier 
Molar fraction vector 
Zonoid, convex set of mixtures 
Set of Zonoids in R" 
Spatial coordinate in R or R3 

Greek letters 

Relative volatility, a = k2/k’ 
Curve, boundary of a convex 

An-1 n - 1 Dimensional simplex (of molar fractions in E, dim E = n) 

6 
i2 - il 

Dirac measure; dimensionless translation operator, 6 = fi’ 7 

8 Operator taking boundary of an open set 

; 

n-Volume of Z. (Z c E, dim E = n) (mol)” 
Extent of separation 

c System state 
0 Reduced variance 
r Reduced time. parameter on a curve 

Superscripts 

i,k 

+ 

Subscripts 

.i 
0 

Symbols 

[I 
I...1 
0 
+ 

Chemical species 

Positive orthant, upper part 

Region 
Entering in the system 

Matrix 
A set of elements 
Composition of functions: ,f” g(x) =.fla(s)) 
Sum or Minkowski sum 
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A Exterior product of vectors 

n-D n-Dimensional (space) 

l-d l-Differential (family) 

sgn(x) +l ifx>O, -1 ifx<O 

< Exists in 

0 Of the order of 
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10. APPENDIX: CALCULATION OF 2-VOLUME OF SEPARATION 

We give a general expansion for El 2 for the case when F(t) is generated by a Polya 

frequency (PF) function (in fact 2-selectivity would be sufficient here) and obtain an 
explicit equation in the special case of a Gaussian isovariant model. 

10.1. A general expansion for E 

In the case of a Polya frequency function let us write 

F’(u) = F(u), F2(u) = F(u - 6) 

dropping the indexes of solutes and taking unit total quantities of each solute, from 
eqn. 19, using Theorem 6a to discard absolute values: 

dE = 
N(u) F(u) du 

N(u - 6) F(u - 6) (Al) 

We also make the hypothesis that N(u)F( u) and N(u)F”( u), k > 1, is zero for u = + co. 
We insert the Taylor development of F and N around u: 

F(u - 6) = F(u) - #‘(u) + (l/2)S2F”(u) - ( l/6)S3Fc3)(u) + .._ 

N(u - S) = N(u) - 6F(u) + (1,‘2)6’F’(u) - (1/6)S3F”(u) + . . . 

taking into account N’(u) = F(‘(u) in eqn. Al and develop dZ/du in powers of 6. From 
the multi-linearity property of determinants, we obtain 

a 
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where the superscripts in parentheses represent derivation. On integration on R we 
obtain the Taylor expansion of c - in powers of 6. From integration by parts of the 
general determinant, we obtain 

+CG +I 

N(u) 44 
fv-“(U) p&J@) du = I s N(u)Pk’(u) - F(u)Fk- “(u)du 

+K 

= - 2 
s 

F(u)~~-‘)(u)~u + [Nap- r’(u)]-“, 

-3c 
where the last term is zero in view of the hypothesis. The general expansion can be 
written as 

T-2 
L- c m (- ‘jk+‘. # + T(f,(U)~“-L’(u))&, 

k! s 
642) 

k=l 

Each coefficient in eqn. A2 is a well behaved integral which can be calculated 
numerically fairly easily and reduces the calculation of E to quadratures. However, the 
series is slowly convergent for values of 6 over 2. 

For any even Polya frequency function, expression A2 loses its terms with even 
k, as Fk-“(~) is odd. 

Limiting eqn. A2 to its first terms, we obtain 

+ Lx +ZC +Z.2 

E = 26 
s 

F(u)‘du - 6’ 
s 

F(u)F’(u)du + + 
s 

F( u)F”( u)du + 0(S4) 

- 3c1 - X’ -I 

Applying eqn. A2 to the Gaussian isovariant model, we obtain the seven-term 
expansion, without even terms as F(u) is even: 

In view of the classical expansion of the error function around x = 0: 

1 
erf(x) = I + __ 

( 

X3 X5 X7 

2. J27s 
-x-T+E-jij+..* 

> 

rewriting eqn. A2 with x = “: 

Jz 

(A3) 

(A4) 
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gives through identification the final expression of 2-volume for the Gaussian 
isovariant model: 

P=Zerf(-+)-I=Erf(>) 645) 

10.2. Fourier trarwformation 

Eqn. A5 may also be derived through the use of Fourier transformation, which 
proves to be an interesting tool for the calculation of volumes of zonoids. Starting from 
eqn. Al, we note that, on integration on R, 

+X 

c- Y- 
s 

[N(u)F(u - 6) - N(u - G)F(u)]drr (A9 

- Z. 

Integrating by parts the second term in eqn. A6, we obtain 

F-2 
Y- s N(u)F(u - 6)du - 1 

-CC 

As we may write this as 

+ 32 

2 = 2 I N(u)fl-(6 - u))du - I 

- IT. 

(A7) 

Using the definition of the convolution integral 

+TJ 

f&4 = 
s 

./Wg(v - n)du 

-x 

(A@ 

we recognize from eqn. A8 that Z results from convolution of N(u) with F( -u)_ 
Alternatively. this can be recast, using the correlation integral 

+ x* 

h(v) = 
I 

flu)g(u + v)du 

--I 

to say that Z( -6) results from correlation of N(u) with F(u). Indeed, eqn. A8 reduces, 
if F is even, i.e.. F(u - 6) = F(6 - u). to the convolution 

E(6) = 2N*F- 1 

2, as a function of 6, results from a convolution between N and F. 
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Now we consider classical results linking Fourier transforms and convolution. 
Call Jv,z) the Fourier transform J off; and J- ‘v,z) the inverse Fourier transform: 

(A9) 

Let us introduce explicit (heavy) notations about the Fourier transform specifying the 
initial function, its variable and the variable of the transform, i.e., Jcf(u);z). We write 
classical properties, e.g., 

Jcf ; z) = lalJCf(u); cc) 

the equation for the Fourier transform of a derivative: 

J(f’(u);z) = izJ(fQ.4);:) 

and the equation for the Fourier transform of a convolution: 

f*g(u) = &J- L(Jlfb4;=) J(g(u);=); u) (AlO) 

The equation for the Fourier transform of a correlation involves the conjugate of the 
Fourier transform of one function (and is not symmetric): 

h = fi J- ‘(Jgz) J(g;z);u) 

The convolution equations apply to F(U) and N(u) as defined in model II, as F(u) is 
even. Now, it is well known that a normal centred distribution is stable by operator J, 
i.e., 

J(F(u);z) = F(z) 

From the derivation rule, 

Then we obtain, from eqn. A7 

Z(6) + 1 = 2 J- ‘(& J(F;z) J(N;z)$) 

from which follows eqn. A5 through 

E(6) + 1 = 2J-’ I.lexp(-z’);S 
6 iz 

= 2J-1(J(hf-j);r):b) = Zerf(+) 
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= J(&V(u);s) = J(,/%(u);=,,;?) = 
J&5):;) 

10.3. A basic equation .for Gaussian miring kernel 

Let 

We apply Fourier transformation to ,f: seen as a convolution equation of simple 
normalized transforms of g 

J(f@);z)=&J g z . 
( (0)$(g(:):=) 

Hence 

fls) = (&&z)(&+ uf2) 
Therefore. a Gaussian mixing kernel. applied to a Gaussian family, gives a Gaussian 
family whose variance is the sum of variances. 
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